Related Links | Frequently Asked Questions | Community Feedback | Downloads | Sitemap
CCMC Home | CCMC Stakeholders | GSFC Staff | Publications | Meetings and Workshops | Concept of Operations
Models At A Glance | ModelWeb Catalog and Archive
Request Procedures | Generate Input Data Files & Parameters | Movies on Request | About the Run Process | Publications Policy
Search run database | Publications policy | Special events | Space Weather Explorer | Request run output | Kameleon Software
Instant Model Run
Forecasting Support tools | iSWA | Experimental Real Time Simulations | Operational Geospace Model Validations
GEM Challenge | CEDAR ETI Challenge | GEM-CEDAR Challenge | SHINE Challenge | SW ScoreBoard
Magnetosphere Modules | Student Research Contest | CCMC Tutorial at CEDAR | SW REDI
STEREO | THEMIS | MMS | CASSINI auroral campaign | SOTERIA

Coupled Thermosphere/Ionosphere Plasmasphere (CTIP) Model

Model Description
Model Authors/Developers
Model Input/Output
Run Request Procedures
Model Contacts
> View Ionosphere Models Simulation Results

Model Version
1.0

The coupled thermosphere-ionosphere-plasmasphere (CTIP) model consists of three distinct components:

All three model components are run concurrently and are fully coupled with respect to energy, momentum, and continuity.

The thermospheric code simulates the time-dependent global structure of the wind vector, temperature, and density of the neutral thermosphere by numerically solving the non-linear primitive equations of momentum, energy, and continuity on a 3D spherical polar grid rotating with the Earth. The latitude resolution is 2 deg, longitude resolution is 18 deg, and the vertical direction is divided into 15 levels in logarithm of pressure from lower boundary of 1 Pa at 80 km altitude. The equation of motion includes Coriolis effects, horizontal pressure gradients, horizontal and vertical viscosity, and ion drag. e energy equation describes horizontal and vertical advection of energy, horizontal and vertical heat conduction by both molecular and turbulent diffusion, heating by solar UV and EUV radiation, cooling by infrared radiation, and ionospheric Joule heating. The continuity equation incorporates three major species: atomic oxygen, molecular nitrogen and molecular oxygen and include chemistry, transport and the mutual diffusion between species.

The high-latitude ionosphere convection model calculates field-aligned ion velocity components from the field-aligned momentum equation. The model includes chemistry, gravity, and ion-ion and ion-neutral collisional drag. The ionosphere is computed self-consistently with the thermosphere pole-ward of 23 deg latitude in both hemispheres. Transport under the influence of magnetospheric electric fields is explicitly treated, assuming ExB drifts and collisions with neutral particles.

The plasmasphere model solves coupled equations of continuity, momentum and energy balance along many closed flux tubes concurrently. The orientation of flux tubes is determined by eccentric dipole approximation to the Earth's magnetic field. Each flux-tube is subject to ExB drift.

Model Authors/Developers:
Dr. Timothy Fuller-Rowell et al
NOAA SEC

Input Parameters:

Model Outputs:

CCMC Contact Person:
Dr. Masha Kuznetsova

(301) 286-9571

Developer Contact Persons:
Mihail Codrescu

Tim Fuller-Rowell

National Aeronautics and Space Administration Air Force Materiel Command Air Force Office of Scientific Research Air Force Research Laboratory Air Force Weather Agency NOAA Space Environment Center National Science Foundation Office of Naval Research

| | | Privacy, Security Notices

CCMC logo designed by artist Nana Bagdavadze