Space Weather in Ionosphere and Thermosphere

Yihua Zheng

For SW REDI 2014

The ionosphere is the densest plasma between the Earth and Sun, and is traditionally believed to be mainly influenced by forcing from **above** (solar radiation, solar wind/ magnetosphere)

Recent scientific results show that the ionosphere is strongly influenced by forces acting from **below**.

Research remains to be done: How competing influences from above and below shape our space environment.

Courtesy: ICON

From Above:

Sun

Flares/CMEs/HSS

all have impacts on IT

Earth lonosphere/Thermosphere

Solar energetic particles

Solar Irradiance

CME, Flares, and Coronal Hote HSS Radiation storm
proton/ion radiation (SEP) <flare/
CME>

electron radiation CIR HSS/CME>

Radio blackout storm <flare>

Geomagnetic storm

CME storm (can be severe)

CIR storm (moderate)

Ionosphere - Thermosphere Overview

Ionosphere - Thermosphere Overview

The daytime ionosphere exhibits significant variability in its motion and density. the source of these changes: unknown

likely originates with modulation of neutral and/or ionized state variables along the magnetic field - need to be determined

coupled ion-neutral dynamics

critical

Space Weather Phenomena and Effects in the Ionosphere

- Aurora hemispheric power (satellite charging, scintillation)
- Satellite drag due to neutrals
- Equatorial bubbles/irregularities —scintillation, communication problems
- * Radio blackout -- solar flare
- Polar Cap Absorption solar energetic particles

Types of space weather events affecting nav and commu

- SID (Sudden lonospheric disturbance due to x-ray in solar flares dayside
- Solar energetic particle precipitation particularly protons High-latitude
- 3. Geomagnetic storm disturbances Ubiquitous/global

lonsophere/ Thermosphere

Eruptive solar events

Magnetosphere

Communication/Navigation Problem

Flare: SWx impacts

- Cause radio blackout through changing the structures/composition of the ionosphere (sudden ionospheric disturbances) – x ray and EUV emissions, lasting minutes to hours and dayside
- Affect radio comm., GPS, directly by its radio noises at different wavelengths
- Contribute to SEP proton radiation, lasting a couple of days

Solar radio bursts can directly affect GPS operation

Solar radio bursts during December 2006 were sufficiently intense to be measurable with GPS receivers. The strongest event occurred on 6 December 2006 and affected the operation of many GPS receivers. This event exceeded 1,000,000 solar flux unit and was about 10 times larger than any previously reported event. The strength of the event was especially *surprising* since the solar radio bursts occurred near solar minimum. The strongest periods of solar radio burst activity lasted a few minutes to a few tens of minutes and, in some cases, exhibited large intensity differences between L1 (1575.42 MHz) and L2 (1227.60 MHz). Civilian dual frequency GPS receivers were the most severely affected, and these events suggest that continuous, precise positioning services should account for solar radio bursts in their operational plans. This investigation raises the possibility of even more intense solar radio bursts during the next solar maximum that will significantly impact the operation of GPS receivers.

Cerruti et al., 2008, Space Weather

Ionospheric impact on signal path

Could cause potential problems

- An SID can affect very low frequencies (e.g., OMEGA) as a sudden phase anomaly (SPA) or a sudden enhancement of signal (SES). At HF, and sometimes at VHF, an SID may appear as a short-wave fade (SWF).
- May last from minutes to hours, depending upon the magnitude and duration of the flare.
- Absorption is greatest at lower frequencies, which are the first to be affected and the last to recover. Higher frequencies are normally less affected and may still be usable.

Radio blackout events

Solar Radio Emission affecting VHF

- Type II radio emission
- Type IV radio emission
- Solar flares also create a wide spectrum of radio noise; at VHF (and under unusual conditions at HF) this noise may interfere directly with a wanted signal.

Radiation Storms

- HF/VHF degradation in polar region (a.k.a. Polar Cap Absorption)
- Energetic particles have detrimental effects on the onboard systems of GPS satellites (SEE impacts on spacecraft component)
- Energetic particle events can persist for a few days at a time

Geomagnetic Storms

Global impacts

- CME storms
- CIR storms

Affect HF radio communication – especially when the signal passing through the auroral zone or ionospheric irregularities

GPS - scintillation

Geomagnetic storms may last several days, and ionospheric effects may last a day or two longer.

Scintillation

Phase Scintillation

Ionospheric Scintillation Indices

$$S_4(f) = \sqrt{\frac{\langle I^2 \rangle - \langle I \rangle^2}{\langle I \rangle^2}} \propto f^{-1.5}$$

$$\sigma_{\phi}(f) = \sqrt{\langle \phi^2 \rangle - \langle \phi \rangle^2} \propto f^{-1}$$

ROTI =
$$\sqrt{\langle \text{ROT}^2 \rangle - \langle \text{ROT} \rangle^2}$$

ROT = $C \frac{\Phi_I (t + \Delta t) - \Phi_I (t)}{\Delta t}$

Courtesy: Pi at JPL

S₄ and σ_φ indices – amplitude and phase scintillation, respectively

- I detrended signal intensity
- \$\phi\$ detrended signal phase
- raw data is sampled at 20 or 10 ms (50 Hz or 100 Hz)
- frequency dependent
- Measurements of phase scintillation susceptible to local oscillator errors of transmitter and receiver

ROTI – Rate of TEC index

- ROT detrended rate of TEC derived from dual-frequency phase data
- ROT data sampled at 30 sec (or 1 s)
- Not susceptible to local oscillator errors, in principle

lonosphere Irregularities can have different scales

• plasma bubbles: typical east-west dimensions of several hundred kilometers contain irregularities with scale-lengths ranging from tens of kilometers to tens of centimeters (Woodman and Tsunoda). Basu et al. (1978) showed that between sunset and midnight, 3m scale irregularities that cause radar backscatter at 50 MHz, co-exist with sub-kilometer scale irregularities that cause VHF and L-band scintillations. After midnight, however, the radar backscatter and L-band scintillations decay but VHF scintillations caused by km-scale irregularities persist for several hours.

> Journal of Atmospheric and Solar-Terrestrial Physics Volume 61, Issue 16, 1 November 1999, Pages 1219-1226

Spacecraft Drag (LEO)

- Spacecraft in LEO experience periods of increased drag that causes them to slow, lose altitude and finally reenter the atmosphere. Short-term drag effects are generally felt by spacecraft <1,000 km altitude.
- Drag increase is well correlated with solar Ultraviolet (UV) output and additional atmospheric heating that occurs during geomagnetic storms.
- Most drag models use radio flux at 10.7 cm wavelength as a proxy for solar UV flux. Kp is the index commonly used as a surrogate for short-term atmospheric heating due to geomagnetic storms. In general, 10.7 cm flux >250 solar flux units and Kp>=6 result in detectably increased drag on LEO spacecraft.
- Very high UV/10.7 cm flux and Kp values can result in extreme short-term increases in drag. During the great geomagnetic storm of 13-14 March 1989, tracking of thousands of space objects was lost. One LEO satellite lost over 30 kilometers of altitude, and hence significant lifetime, during this storm.

Satellite Drag

•Atmospheric drag magnitude: $\beta = \frac{c_D A}{m}$ is ballistic coefficient β is atmospheric density

 $v \cong v_{sat}$

Solar cycle and space weather have strong impact on neutral atmospheric density

Increasing atmospheric drag impacts:

Frequency of "Drag Make-Up" maneuvers for satellite to stay in control box

Covariance

Uncertainty in predicted atmospheric drag impacts:

Future satellite position predictions

The ionosphere is the densest plasma between the Earth and Sun, and is traditionally believed to be mainly influenced by forcing from **above** (solar radiation, solar wind/ magnetosphere)

Recent scientific results show that the ionosphere is strongly influenced by forces acting from **below**.

Research remains to be done: How competing influences from above and below shape our space environment.

Courtesy: ICON

iSWA layout for ionosphere products

http://bit.ly/iono_layout