

Space Weather In the Magnetosphere

Yihua Zheng

SW REDI Engineers

Jan 28, 2014

Recap

The Sun maker of space weather

CME, Flares, and Coronal Hole HSS Three very important solar wind disturbances/structures for space weather

✓ Radiation storm

- o proton radiation (SEP) <flare/CME>
- o electron radiation <CIR HSS/CME>
- ✓ Radio blackout storm <flare>
- Geomagnetic storm
 - CME storm (can be severe)
 - CIR storm (moderate)

- Solar wind +magnetosphere interactions
- CIR/HSS and CME impacts on Earth
- Importance of magnetosphere in space weather

Geomagnetic storm

- CME storm (can be severe)
- CIR storm (moderate)

Earth's magnetosphere: home to many different plasma population of different energies – pose hazards to SC operation

A movie on Earth's magnetosphere

The solar wind pushes and stretches Earth's magnetic field into a vast, comet-shaped region called the magnetosphere. The magnetosphere and Earth's atmosphere protect us from the solar wind and other kinds of solar and cosmic radiation.

- CME (you have seen plenty of them already)
- CIR (Corotating Interaction Region) High Speed solar wind Stream (HSS)

Geomagnetic storm

- CME storm (can be severe) Kp can reach 9
- CIR storm (moderate) Kp at most 6

Solar Maximum (ICME) Storm

Two major types of solar windmagnetosphere interactions

Illustration of Geomagnetic storms due to a CME

Geomagnetic storms due to CIRs are at most moderate

In-situ signatures of CME and CIR HSS at L1

ACE and WIND: important upstream solar wind monitor

Inner Magnetosphere: Up to ~ 10Re

Magnetic Storms

- Dst measures ring current development
 - Storm sudden commencement (SSC), main phase, and recovery phase
 - Duration: days

- Most intense solar windmagnetosphere coupling
- Associated with solar coronal mass ejections (CME), coronal holes HSS
- IMF Bz southward, strong electric field in the tail
- Formation of ring current and other global effects

Substorms

- Instabilities that abruptly and explosively release solar wind energy stored within the Earth's magnetotail.
- manifested most visually by a characteristic global development of auroras
- Last ~ hours

"planetarische Kennziffer" (= planetary index).

- Geomagnetic activity index range from 0-9 disturbance levels of magnetic field on the ground - currents
- 1. Non-event period of 12/01/2010 12/7/2010
- 2. Moderate event April 5, 2010
- 3. Extreme event Oct 29 Oct 31, 2003

http://bit.ly/Kp_layout Threshold Kp>=6

- <u>http://www.swpc.noaa.gov/NOAAscales/</u> <u>index.html#GeomagneticStorms</u>
- Operational world

Dst: Disturbance of Storm Time

Measure of Storm Intensity

CME storm: Dstmin ~ -600 nT

1989 March 14 Dstmin= -589 nT

Inner magnetosphere plasmas

- Plasmasphere
 - 1-10 eV ions
 - ionospheric origin
- Ring current
 - 1-400 keV ions
 - both ionospheric and solar wind origin
- Outer radiation belt
 - 0.4-10 MeV electrons
 - magnetospheric origin

Inner magnetosphere: Gigantic Particle accelerator

RB: Current understanding

Geo Gallileo International 4 3. Inward diffusion GPS space station 3. Outward diffusion ~MeV electrons 2 Earth radii 2. Gyro-resonant Wave acceleration -2 1. Substorm injection and inward diffusion ~1-300 keV electrons -2 10 -66 8 -4 Ĥ. Earth radii

Electron acceleration in the outer radiation belt

Horne et al., 2007, Nature Physics

Van Allen Probes: current mission on radiation belt dynamics

Three-Belt Structure

Quiet-time phenomenon

Energetic electron data from the Relativistic Electron-Proton Telescopes (REPT) on the Van Allen Probes

CME vs CIR storms

- CME geomagnetic storms: RB flux peak inside geosynchronous orbit. The peak locations moves inward as storm intensity increases
- CIR geomagnetic storms: More responsible for the electron radiation level enhancement at GEO orbit

CME (superstorm condition) impact on RB

Halloween storm

CME (superstorm condition) impact on RB

Shprits et al., 2011, Space Weather

SWx Consequences of CIR HSS

CIR HSS: usually long-duration (3-4 days) Radiation belt electron flux enhancement Surface charging Geomagnetic disturbances (moderate at most) heating of upper atmosphere: satellite drag

Energetic electron radiation: (the >0.8 MeV electron flux exceeding 10^5 pfu alert threshold): takes 2-3 days from the CIR interface

Although geomagnetic activity (due to CIR HSS) during the declining and minimum phases of the solar cycle appears to be relatively benign (especially in comparison to the dramatic and very intense magnetic storms caused by interplanetary coronal mass ejections (ICMEs) that predominate during solar maximum), this is misleading. Research has shown that the time-averaged, accumulated energy input into the magnetosphere and ionosphere due to high speed streams can be greater during these solar phases than due to ICMEs during solar maximum!

Tsurutani et al., 2006

Magnetospsheric Products

"*p*lanetarische *K*ennziffer" (= planetary index).

- Geomagnetic activity index range from 0-9 disturbance levels of magnetic field on the ground - currents
- 1. Non-event period of 12/01/2010 12/7/2010
- 2. Moderate event April 5, 2010
- 3. Extreme event Oct 29 Oct 31, 2003

http://bit.ly/Kp_layout Threshold Kp>=6

Magnetopause stand-off

distance

delineating the boundary between SW and Earth's magnetosphere

- r0 <=6.6 Re model product
 - Events: Dec 28, 2010
 - Jan 7,2010 kp=5 at 22:30 UT on 1/6/2011

Degree of compression of MP Due to Pdyn of solar wind (interplanetary shock /HSS)

− Non-event: Dec 1 − 7, 2010

An iSWA layout for magnetospheric products

http://bit.ly/iswa_mag

Challenges in forecasting geomagnetic storms

Forecasting Earth-Directed CME and its a minor radiation storm (SEP) But a major geomagnetic storm 12 July 2012 solar eruption

Resulting in a Kp = 7- on a scale from 0 - 9, Kp: a measure of geomagnetic disturbances

In-Situ signature can be quite complex

Space Weather Impacts on spacecraft in the magnetosphere

SWx Impacts on Satellites Electronics/ Components

hazards presented by the radiation and plasma environment in space

- Single Event Effects (affect all SC)
 - caused by protons and heavy ions with energies of 10s of MeV/amu
- Internal Charging (those in radiation belt)
 - caused by electrons with energies above about 100 keV that penetrate inside a vehicle
- Surface Charging (all in Earth's environment)
 - caused by electrons with energies of 10s of keV that interact with spacecraft surfaces
- Event Total Dose (all SC)
 - caused primarily by solar protons and possibly also by transient belts of trapped particles, typically protons with energies near 10 MeV

- Orientation effects (spacecraft that use Earth's magnetic field for orientation)
- Satellite drag (LEO)

Environment Hazards for different orbits

Space hazard	Spacecraft charging		Single-event effects			Total radiation dose		Surface degradation		Plasma interfer- ence with com- munications	
Specific cause	Surface	Internal	Cosmic rays	Trapped radia- tion	Solar particle	Trapped radia- tion	Solar particle	lon sputter- ing	O ⁺ erosion	Scintil- lation	Wave refrac- tion
LEO <60°											
LEO >60°											
MEO											
GPS											
GTO											
GEO											
HEO											
Inter- planetary											
	Important		nt		Relevant			Not applicable			

Joe Mazur