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Introduction 
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“An Ounce of Prevention Is Worth a Kilogram of Cure” 

BACKGROUND 

 Spacecraft are growing in complexity and sensitivity to environ-
mental effects.  The spacecraft engineer must understand and 
take these effects into account in building reliable, survivable, and 
affordable spacecraft.  Too much protections, however, means 
unnecessary expense while too little will potentially lead to early 
mission loss.  The ability to balance cost and risk necessitates an 
understanding of how the environment impacts the spacecraft 
and is a critical factor in its design.  This course is intended to 
address both the space environment and its effects with the intent 
of providing practical means for mitigating or at least limiting the 
worst aspects of spacecraft environment interactions.   
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Space Environment Interactions 
WHY DO WE CARE? 
•  The Space Environment impacts everything 

from spacecraft operations to the Earth’s 
power grid 

•  Spacecraft loss or damage is very expensive, 
particularly with growing reliance of many 
Earth-based functions on space systems 

•  Although the Space Environment and its 
interactions have been studied since the dawn 
of the space age, there are still many 
unknowns 

•  With careful design, many space interactions 
problems can be limited at a relatively low cost 

Thermal Effects on 
ISS Solar Array 

Prototype 
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Impact of Space Weather on Spacecraft Costs 
•  The 600 satellites currently in orbit are worth $50-100 billion with 235 

insured for $20 billion 

•  1500 space payloads are expected to be launched in the next 10 years with 
a potential insured value of $80 billion! 
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Subsystem In-flight Failure Causes  
(Hecht, 1985) 
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Impact of the Space Environment on Space Systems+ 
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Impact Of Space Environment and Testing On 
Spacecraft Failures 

ENVIRONMENTAL 
MODEL  

ENVIRONMENTAL 
ESTIMATES  

ENVIRONMENTAL 
DESIGN 

REQUIREMENTS 

OVER TEST --- PRE-LAUNCH 

“DESIGN FAILURE”  

UNDER TEST --- IN-FLIGHT 

“DESIGN FAILURE”  
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An Integrated Process 
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F A C T O R S	


STEP 1!
ENVIRONMENTS!

VS!
INTERACTIONS	


STEP 2!
INTERACTIONS!

VS!
DESIGN OPTIONS	


STEP 3!
DESIGN OPTIONS!

VS!
FACTORS	


Integrated Approach to Environment Mitigation 
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Space Weather 
Impacts 
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Spacecraft Charging 
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Region of 
Spacecraft 
Charging 
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ATS-6 Spectrogram of Geosynchronous Charging 
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Theory of Spacecraft Charging: A Simple 
Picture … 
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Theory of Spacecraft Charging: A Simple Example 
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Spacecraft Charging Observations: Plasma 
Temperature vs Potential 
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SCATHA Arc Discharge Pulses For 
1979 To 1982 
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DMSP Low Altitude Spacecraft Charging 
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TIROS-N/NOAA-6 Measurements of Bright Aurora 
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Auroral Effects on JPL Ops, Oct. 24, 2003 

Oct 24:  ADEOS-Midori-2 (JPL SeaWinds Instrument) Failed. 
Attributed to Spacecraft Surface Charging 

Lessons Learned: Geophysical Indices Critical to Rapid Anomaly 
Resolution for JPL Missions 
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Plasma Interactions 
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Surface Potential Profiles for Biased Solar Cells 

“Snap-Over” 

“Arcing” 
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Results of a Discharge on the European 
Eureca Solar Array 
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Worst Case Surface Potentials in the Earth’s 
Environment in the Absence of Sunlight (Evans et al., 
1989) 



36 

Space Weather Impacts on Spacecraft and Mitigation Strategies 

Design Guidelines for Assessing and Controlling 
Spacecraft Charging Effects 

GENERAL DESIGN GUIDELINES: 
•  Ground all conductive spacecraft elements 

•  Use conductive surface materials 

•  Shield all circuitry (Faraday Cage Concept) 

•  Filter circuits near ESD sources 

•  Develop, document and follow procedures 
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Material Considerations in Controlling Charging 

SURFACE COATINGS AND MATERIALS TO BE 
AVOIDED FOR SPACECRAFT USE 

SURFACE COATINGS AND MATERIALS 
ACCEPTABLE FOR SPACECRAFT USE 

Material  

Anodyze  

Fiberglass material 

Paint (white)   

Mylar (uncoated)  

Teflon (uncoated)  

Kapton (uncoated) 

Silica cloth  

Quartz and glass 
surfaces 

                                             Comments 

Anodyzing produces a high-resistivity surface to be 
avoided. The surface is thin and might be acceptable if 
analysis shows stored energy is small 

Resistivity is too high 

In general, unless white paint is measured to be 
acceptable, it is unacceptable 

Resistivity is too high 

Resistivity is too high. Teflon has a demonstrated long-
time charge storage ability and causes catastrophic 
discharges 

Generally unacceptable, due to high resistivity. However, 
in continuous-sunlight applications if less than 0.13 mm 
(5 mils) thick, Kapton is sufficiently photoconductive for 
use 

Has been as antenna radome. It is a dielectric, but 
because of numerous fibers, or if used with embedded 
conductive materials, ESD sparks may be individually 
small  

It is recognize that solar cell coverslides and second-
surface mirrors have no substitutes that are ESD 
acceptable.  Their use must be analyzed and ESD tests 
performed to determine their effect on neighboring 
electronics.  

Material  

Paint                
(Carbon black) 

GSFC NS43*           
paint (yellow) 

Indium tin oxide 
(250 nm)   

Zinc orthotitanate 
paint (white)  

Alodyne 

                                             Comments 

Work with manufacturer to obtain paint that satisfies ESD 
conductivity requirements of section 3.1.2 and thermal, 
adhesion, and other needs 

Has been used in some applications where surface 
potentials are not a problem (apparently will not 
discharge) 

Can be used where some degree of transparency is 
needed; must be properly grounded; for use on solar 
cells, optical solar reflectors and Kapton 

Possibly the most conductive white paint; adhesion 
difficult without careful attention to applications 
procedures 

Conductive conversion coatings of magnesium, 
aluminum etc., are acceptable 

*GSFC denotes Goddard Space Flight Center 
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Internal Electrostatic 
Discharge (IESD) 
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Internal Electrostatic 
Discharge—Satellite Killer … 

DISCHARGE IN DIELECTRIC!
Lichtenberg Pattern!

39 
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Internal Electrostatic 
Discharge—The Movie 
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Regions in Earth’s 
Environment of 

Concern for Internal 
Charging 

RULE OF THUMB: 
1010 e/cm2 in <10 

Hrs = 1 IESD 
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Radiation Interactions 
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Displacement Interactions!

Ionization Losses!

Radiation 
Effects on 
Spacecraft 
Systems 

100 µm!

50 µm!

• Energy Loss Effects!
- Displacement Damage!
- Total Ionizing Dose!

- Single Event Effects!
- SEU!
- Latchup!
- Gate Rupture!

- Flux/Rate Effects !
- Material Changes !
- Internal Charging!
- UV/EUV!

Primary Sources of Damage!



45 

Space Weather Impacts on Spacecraft and Mitigation Strategies 

Recipe for Dosage 

“LET” 
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Wide-field Planetary 
Camera CCD!

 Proton Events In South 
Atlantic Anomaly 

Wide-field Planetary 
Camera CCD!

 Galactic Cosmic Ray 
“Nuclear Shower” 
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Contour plots of >1 MeV electron and >10 MeV proton integral fluxes 
at Jupiter.  Coordinate system used is jovi-centric.  Models are based 

on Divine/GIRE models. Meridian is for System III 110° W. 

 

Divine/GIRE Jovian-Trapped Radiation Models 
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COURTESY A. JOHNSTON 

Comparisons Between Jovian and Terrestrial 
Radiation Spectra 
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Trapped Proton 
Effects on Cassini 

Upsets along Cassini orbital 
traces overlaid on SATRAD >10 
MeV proton fluxes 

Observed (through mid-2008) vs 
predicted (SATRAD >100 MeV 
proton fluxes) hourly upsets  

Forecast: 

Lessons Learned: Radiation belt 
models can predict upsets and 
drive Ops planning 
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Tedlar: 3-4 Yrs GEO 
Test Exposure 

White Paint: GEO 
Test Exposure 

Silver Teflon: 
Flight Data 

Radiation Effects on 
Materials 

Materials suffer from UV/
EUV and particle 
radiation (Grads on 
surfaces!) through 
changes in:  

•   Dimensions 
•   Tensile strength 
•   Conductivity 
•   Transmission 
•   Reflectance 
•   Decomposition 

Adapted from Meshishnek et al., 2004 
Courtesy of the Aerospace Corporation 
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RADIATION EFFECTS ON MATERIALS	


SOUTH ATLANTIC ANOMALY	


PROTON SEUS--HUBBLE	


Radiation Effects 
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RADIATION HARDENING APPROACH!
•  Define the shielded radiation environment!
•  Parts parameter data--characterization screening!
•  Worst-case circuit analysis--conservative design rules!
•  Shield to provide the part performance requirements!
•  Employ radiation tolerant circuit designs!

5 YR TOTAL DOSE	

Radiation Hardening Procedures 
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Summary 
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Conclusions 

•  WHY DO WE CARE?  
–  ENVIRONMENTAL EFFECTS ARE POTENTIALLY EXPENSIVE 

PROBLEMS 
–  THERE ARE STILL MANY UNKNOWNS 
–  PROPER DESIGN WILL LIMIT PROBLEMS 

•  WHAT CAN WE DO? 
–  DESIGN:   EVALUATE THE MISSION DESIGN USING AN  

  INTEGRATED APPROACH 
–  BUILD:  REQUIRE ADEQUATE TESTING (RECOMMEND  

  ENGINEERING TEST MODEL!) 
–  FLIGHT:  DURING FLIGHT, EVALUATE EFFECTIVENESS OF  

  MITIGATION METHODOLOGY 
–  POST FLIGHT:   USE DATA TO UPDATE MODELS 
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Integrated Approach to Mission Design 

DESIGN PROCEDURES 

1)  Identify Requirements Based on Trajectory, Instruments, and 
Unique Mission Constraints 

2)  Rate the Environments versus the Interactions 

3)  Identify the Design Trade-Offs for the Most Critical 
Environment/Interaction Concerns 

4)  Establish Weight, Cost, Complexity Criteria 

5)  Optimize Combinations of Design Choices 

6)  Evaluate Resulting Designs 
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USEFUL INTERNET SITES FOR SPACE ENVIRONMENT EFFECTS  
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Backup 
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SOLAR PROTON 
EVENTS:  

SPACE “RAIN” 

65 

Single Event Upsets 
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Radiation Effects on Solar Cell Power 
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Dose-Depth Curves for 35° and 90° 200 NM 
Orbits 



Integrated Approach to Mission Design 
KEY ENVIRONMENTS VERSUS INTERACTIONS 

INTERACTIONS 

NEUTRAL ATMOSPHERE X x X X x 

E,B FIELDS x x x X X 

EM FIELDS x X 

SOLAR WIND PLASMA x X 

IONOSPHERE PLASMA x X X x 

AURORA PLASMA X 
TRAPPED RADIATION X X x X X 
GALACTIC COSMIC RAYS X x 

SOLAR PROTON EVENTS X X X x 

METEOROIDS x X X 
DEBRIS x X X 
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 *Legend:  X = Major Effect  x = Observable Effect  x = Minor Effect   

(Note: assessment very dependent on spacecraft design) 68 



Integrated Approach to Mission Design 
DESIGN OPTIONS VERSUS INTERACTIONS 

INTERACTIONS 

SHIELDING X X x X X X X X X 

POSITIONING X x x X x X X X X X X X X X 
MATERIAL PROPERTIES X X x X X X X X 

EDAC SOFTWARE x X X x x 

REDUNDANCY x X X x 
CIRCUIT DESIGN X X X X X x X x x 

MARGIN/HARDNESS X X X x x x X X 
GROUNDING X X X x 

TRAJECTORY X x x X X x x X X X X X x 

OPERATIONAL PROCEDURES x x x x x x X X 
CONSTRUCTIONS METHODS X X x x x X x 
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 *Legend:  X = Major Effect  x = Observable Effect  x = Minor Effect   
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Integrated Approach to Mission Design 
DESIGN OPTIONS VERSUS MISSION DESIGN FACTORS 

FACTORS 

SHIELDING X X x X x X X 

POSITIONING x x x X x x X X 
MATERIAL PROPERTIES X x X x x X 
EDAC SOFTWARE X X X x X 
REDUNDANCY X X X X x x 
CIRCUIT DESIGN x x  X X x  X x  X 
MARGIN/HARDNESS X x  x X X X x 

GROUNDING x x x  x X 
TRAJECTORY X x x x  x X 
OPERATIONAL PROCEDURES x x x x  X x x 

CONSTRUCTION METHODS x x x  x x X 
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 *Legend:  X = Major Effect  x = Observable Effect  x = Minor Effect   

(Note: Assessment very dependent on spacecraft design) 
70 
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Environmental Requirements Procedural Flow 
•  THE FIRST STEP IS TO DEFINE THE ENVIRONMENT(S) THAT THE SPACECRAFT CAN BE EXPECTED TO 

ENCOUNTER. 

•  STEP TWO IS TO ANALYZE POTENTIAL ENVIRONMENTAL INTERACTIONS THAT COULD BE OF CONCERN 

•  THE THIRD STEP IS TO CARRY OUT APPROPRIATE STEPS TO MITIGATE THE ADVERSE INTERACTIONS 

•  THE SPACECRAFT DESIGN IS EVALUATED THROUGH TESTING TO VERIFY THAT IT CAN FUNCTION UNDER 
THE PRESCRIBED RANGE OF ENVIRONMENTAL CONDITIONS 

•  IN-FLIGHT DATA FROM THE ACTUAL SPACECRAFT IS ANALYZED TO DETERMINE HOW WELL THE DESIGN 
METHODS WORKED 

•  FINALLY, THE INFORMATION LEARNED FROM THE FLIGHT IS USED TO UPDATE AND DEVELOP BETTER 
MODELS FOR FUTURE DESIGNERS  
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Estimated Plasma Parameters/Potentials in the Solar System 

72 
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Radiation Definitions 

=



74 

Space Weather Impacts on Spacecraft and Mitigation Strategies 

Galactic Cosmic Rays 
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Cosmic Ray Nuclear Species Spectra at 1 AU 

GCR ions at 1 AU for SSMin and 
SSMax and in Interstellar Space (R. 

Mewaldt and others). 
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Solar Proton Events 
and CMEs 
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March–October 1989 Solar Proton Events Compared 
with August 1972 Event for E>10 MEV 

BIG CME/GEOSTORM! BIG SOLAR PROTON EVENT! 
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SPE and CME Effects on Spacecraft Systems 

Data Courtesy Joe Allen 
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1989 Solar Proton Event Effects on Magellan 
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1989 Solar Proton Event Effect on 
Geosynchronous Orbit 
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Differential Charging on ATS-5 
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Effects: 
- Neutron Effects 
- Latchup 
- Total Dose 
- Dose Rate 
- Single Event Upset 
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Radiation Effects on Devices 
Type of Radiation Effect  

•  Total Ionizing Dose (TID) – protons, electrons, 
gamma rays 

–  Enhanced low dose rate effect 

•  Single Event Effects (SEE)  
– protons, heavy ions 
–  Single Event Upset (SEU) 
–  Single Event Latchup (SEL) 
–  Single Event Burnout (SEB) 
–  Gate Rupture (SEGR) 
–  Single Event Functionality Interrupt (SEFI) 
–  Single Event Dielectric Rupture (SEDR) 

•  Displacement damage effects  
– protons, neutrons 

•  Single particle “microdose”  
– heavy ions 

•  Single particle-induced transients in linear/
analog parts 

Effect on Devices 

Both gradual, parametric degradation and sudden 
functional failure – cumulative effect 

Severe Radiation Hardening Assurance problem in linear 
bipolar devices 

Variety of single particle effects 
Soft failures – change in logic state 
Functional and catastrophic failure 
Catastrophic failure in power transistors 
“Hard SEU” 
Recoverable functional failure; change in operating mode 
“Hard” SEUs; similar to SEGR, FPGA antifuse shorting 

Bulk lattice damage – “billiard ball” collisions 
Analog devices, solar cells, optocouplers 

TID failure of a single transistor – “weak” bits 

Large transients that can upset digital circuits 
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Photon Interactions with Matter 
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Radiation Transport: Electron Monte Carlo 
Simulations 
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Geometric Effects 
on Shielding 
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€ 

No#Upsets =
dF(LET)
d(LET)∫ σ(LET)d(LET)

Examples of Single Event Upset Cross Sections 
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dF(LET)
d(LET)

= dF(E)
dE

dE
d(LET)
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SPE VS GCR RADIATION ENVIRONMENTS 
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Solar Proton Event (SPE) Effects on Cassini 

Lessons Learned: Real Time SPE Observations can Predict Effects on 
Ops (Cassini Solid State Recorder Upsets) 
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Simulated Galileo AACS “Power on Reset” Anomalies 
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Physical process of DDD:  Displacement => Generates 
Vacancies => Device Property Degradation 

Displacement Damage 
(DD) in atomic lattice 

and vacancy formation 
due to Silicon 
displacement. 

WHAT IS DISPLACEMENT DAMAGE DOSE (DDD)? 

 

Interstitial formation 
due to Silicon 

rearrangement after 
scattering 

 

 

Cascade damage in 
a silicon lattice 
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Displacement Damage 
•  Basic change in semiconductor lattice caused by scattering collisions 

–  Leads to alteration of electrical and optical properties 
–  Minority carrier lifetime, mobility, absorption edge, 
–  electro-luminescence, carrier removal 

•  Over the years, there has been little concern with displacement damage (NASA only) 
–  Very minor effect in CMOS (carrier removal) 
–  Usually less important than ionization for discrete transistors 
–  Testing is expensive and only done when necessary 

•  Why is displacement damage now important? 
–  Increased use of advanced commercial linear bipolar devices 
–  High precision, high performance circuit applications 
–  Second order effects are becoming important 
–  More use of specialized components 
–  High precision voltage references 
–  Photonic devices 
–  Smaller spacecraft 
–  Less shielding 
–  Lower design margins 
–  Nuclear power sources in close proximity 
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Feature Size/Radiation Effects Trends in Microelectronics 
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Things That Can Go Bump in the Night ... 

"AND WHAT, OH WISE ONE, SHOULD WE DO ... ?" 

CONCENTRATE ON EARLY DETECTION, PREVENTION, AND MITIGATION 

•  TEST, TEST, TEST, TEST, TEST, TEST,.................... 

•  TRUST BUT....INSPECT AND VERIFY—IN PERSON IS BEST!!! 

•  UTILIZE YOUR MISSION ASSURANCE, RELIABILITY, SAFETY, AND 
QUALITY ASSURANCE PERSONNEL 

AND FINALLY: 

•  GARLIC CLOVES SHOULD BE INCLUDED ON ALL INTERPLANETARY 
SPACECRAFT (JUST IN CASE) 


