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!   Flares, coronal mass ejections (CME) and solar 
energetic particles (SEP) 101. 

!   Forecasting – what can we do now? 

!   Future. 
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!   Generally speaking, solar flares and associated SEPs 
and CMEs convert free magnetic energy into heat, non-
thermal particle acceleration, electromagnetic 
radiation, plasma waves and bulk flows – we want to 
capture these processes for predictive purposes.  

!   The flaring process can be divided into three steps: 
!   Energy build-up. 

!   Energy release. 

!   Energy transport. 

Flares, CMEs, SEPs 101 



!   Many large flares are associated with coronal mass 
ejections (CMEs) and solar particle events (SEPs). 

!   While the physics of the three phenomena are linked, 
we do not understand the details yet – predictive 
methods are still quite immature. 

Flares, CMEs, SEPs 101 



!   Optimally, from the physics viewpoint, we would like to 
forecasts eruptions and consequences using first-principles 
models. 

!   Current forecast methods can be classified roughly as 
empirical, semi-empirical and first-principles. 

!   Flare and SEP forecasts are currently empirical and/or semi-
empirical. CME forecasts have entered the first-principles 
stage.  

!   We will demonstrate these using three different models to 
forecast flares, CME and SEPs (more models available via 
iSWA).  

Flare, CME and SEP forecasts 



Automated Solar Activity 
Prediction (ASAP) model 

!   Empirical University of Bradford, UK model (Colak 
and R. Qahwaji, Space Weather, 2009). 

!   Uses SOHO/SDO continuum MDI/HMI continuum 
and magnetogram imagery to predict likelihood of 
flaring activity within next 24 hours. 

!   SOHO MDI data used to build the active region 
classification component of the model. 

!   NOAA sunspot classification and flare data for years 
1982-2006 used for building the flare prediction 
component of the model. 



Automated Solar Activity 
Prediction (ASAP) model 

[26] The association algorithm has managed to associate
a total of 37,515 sunspot groups with solar flares using
their NOAA numbers and the 24 hour time difference.
These 37,515 sunspot groups are associated with 72,727 C
class solar flares, 12,103 M class solar flares, and 1081 X
class solar flares. The difference between the total number

of solar flares and the number of associated sunspots is
caused by the fact that a sunspot group could produce
more than one solar flare within the 24 hour time period.
Also, there are multiple observations (three to four obser-
vations per day) of the sunspot groups that are included in
the NGDC sunspots catalog. Hence, a solar flare can be

Figure 1. The stages and results of sunspot detection and the grouping process. (a and b) The
continuum and magnetogram images, respectively. The (c) detected sunspots and (d) detected
active regions. (e) Figures 1c and 1d are combined using region growing to show the exact locations
of active regions. (f) Using Neural Networks active regions are classified into groups and (g) this
data is also used to detect sunspot groups.
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ASAP active region 
detection and classification 
component (credit: Colak 
and R. Qahwaji, 2009). 

McIntosh classification 
of the sunspot groups 



Automated Solar Activity 
Prediction (ASAP) model 

ASAP flare prediction component (credit: Colak 
and R. Qahwaji, 2009). 

region with a McIntosh classification of EKI and an area of
500 in millionths of solar hemisphere that is associated
only with C and M class solar flares at the same time then
the training vector will be [0.75, 0.9, 0.5, 0.20; 0.9, 0.9,0.1].

3.3. Optimization of the Neutral Networks
Prediction System
[30] The two neural networks are optimized by finding

the minimum Mean Squared Error (MSE) during training
for different NN topologies. MSE is calculated using

MSE ¼ 1=nð Þ
X

n

i¼1

pi $ ri
! "2

; ð1Þ

where n is the total number of examples in the training
vector, pi is the calculated value of each output for the
inputs given in the training vector, and ri is the real output
value given in the training vector.
[31] Several training experiments are carried out while

changing the number of nodes in the hidden layer from
1 to 20. For every new experiment the MSE of the training
is recorded and the number of hidden nodes with the least
MSE is chosen. Both networks are optimized by using one
hidden layer with ten nodes for the first NN and twelve
nodes for the second NN.

4. Practical Implementation and Evaluation
of the Hybrid System
[32] The imaging and machine learning systems are

integrated for the hybrid solar flare prediction system.
The final system is shown in Figure 4. The complete
integrated hybrid system provides automated prediction
of solar flares from MDI images. The system starts its real-
time operations by processing SOHO/MDI continuum
and magnetogram images in the manner explained in
Section 2 to provide automated McIntosh classifications
for the detected sunspots. Then the McIntosh classified
sunspots and their calculated areas are fed to the machine
learning system described in Section 3 which is trained

with 14 years of data after applying the association algo-
rithm. On the basis of the embedded learning rules the
system predicts if a solar flare is going to occur or not. If a
major solar flare is predicted then the probability of this
solar flare to be C, M, or X class flare is also predicted. The
entire system is implemented in C++. It takes about 15 s to
process the latest SOHO/MDI continuum and magneto-
gram images and generate these predictions. A working
version of this system is currently available at http://
spaceweather.inf.brad.ac.uk/. This version is real-time,
fully automated and web compliant.

4.1. Evaluation of the System
[33] The performance of the hybrid system was

evaluated by comparing the generated predictions with
the actual flares as reported by NOAA Space Weather
Prediction Center (SWPC, http://www.swpc.noaa.gov/) in
the NGDC X-ray solar flare catalog. The system was tested
on solar MDI intensitygram images from 1 February 1999
to 31 December 2002. This period included intervals of
high solar activity that produced a considerable number
of C, M, and X class solar flares and investigating periods
of high activity is important for the effective evaluation of
our system.
[34] There were 5267 MDI continuum (intensitygram)

images available during this period at a cadence of four
images per day. These MDI continuum images and
their corresponding 5267 MDI magnetogram images were

Figure 2. Machine-learning system for flare prediction.

Figure 3. Input and output values for first neural
network used for determining the flaring probability.
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“Black box” that tries to capture photospheric 
signatures pertaining to flare activity 



Automated Solar Activity 
Prediction (ASAP) model 

Example ASAP prediction 
(available via iSWA). 



WSA-Enlil model 

!   Combination of semi-empirical and first-principles 
modeling of solar wind and CMEs (Odstricil et al., 
1999; 2004; 2005). 



WSA-Enlil model 

WSA-Enlil background solar wind 
solution (available via iSWA). 

Semi-empirical solution for solar wind flow at 21.5 
Solar radii – photospheric magnetograms used as 
the driver data 

First-principles 3D solution for solar wind in the 
inner heliosphere  



WSA-Enlil model 

WSA-Enlil cone model for CMEs 
(available via iSWA). 

Coronagraph data used in a triangulation tool – 
STEREO A/B COR2 and SOHO LASCO C3 
used as the driver data 

Over-pressured “cone” transient inserted in the 
inner boundary to model CME propagation 



Release model 

!   Empirical model to predict energetic protons using ≈1 
hour earlier arrival of energetic electrons (Posner, 
2007). 

continuously improve on the statistical accuracy of this
matrix with additional statistics from more recent and
upcoming data. An alternative is to look for a functional
approximation of areas with good statistics that can be
extrapolated in the undersampled region. Specifically for
the most extreme events, this technique might be superior
to the actual measurements (from COSTEP), as the reli-
ability of in situ particle detection can suffer from elec-
tronic pileup.
[98] Within the matrix, a typical event progresses from

the mainstream location upward and toward the right,
when a particle event sets in. After that, it progresses
minute by minute upward, and turning left as it reaches a
plateau or follows the suggested sinh intensity-time pro-
file referred to earlier. Although the progression has been

exploited here only in a limited way, forecasting from
individual entries alone provides unprecedented results,
as will be shown in the upcoming subsection.

5.2. Forecasting of Hazardous Ion Events in 2003
[99] Figure 9 (top) shows the sum of all minute-by-

minute 1-hour advance 30 -- 50 MeV proton flux
predictions for the year 2003 (black) alongside the actual
measurements (red). Note that the matrix utilizes only
previously recorded data up to the end of 2002 in order
to simulate a realistic situation. The COSTEP data for 2003
are near complete, but only the first 11 months of 2003
have been available for this study.
[100] As a filtering technique for the raw forecasts we

make the (reasonable) assumption that 20 pfu (hpfu)
defines a threat level for humans and/or technology in
space. A dashed horizontal line indicates the ‘‘critical’’
intensity of 1 (cm2 s sr MeV)!1 of 30--50 MeV protons,
which is equivalent to "20 pfu from the 30--50 MeV
energy range alone.
[101] The second plot from top shows the ratio of fore-

cast proton intensity relative to current intensity (fc). The
onsets of SEPs show series of high fc when not preceded
by elevated intensities. This parameter can be used as a
tool for further filtering and is a good identifier for SPEs
generally. At high intensity levels, such as through the
Halloween event series to be discussed below, a potential
filtering value needs to be adjusted to lower thresholds.
No such filtering has been applied in this study.
[102] The actual warning time on the order of minutes to

hours until onset of the protons event, or reaching the
hazard level, cannot be resolved in the full-year view.
Therefore the bottom two plots show increasingly expanded
views of event time profiles during the Halloween storms
in October and November 2003. The Halloween storms
[Mewaldt et al., 2005b] consist of a series of eight X class
flares and tens of fast coronal mass ejections with their
root cause in a large active region complex. Among them
are X flares that entered the list of most extreme events
ever observed. The associated energetic particle environ-
ment at 1 AU has also been at extreme levels and since
observations have been used to calibrate spectra for the
worst and life-threatening event within the last 500 years,
the Carrington flare from 1859 [Stephens et al., 2005].
[103] The comparison of 1-hour advance forecast of

proton fluxes with the actual observations reveals a rea-
sonable resemblance. Forecasts predict on average slightly
higher fluxes than are observed, in particular for the
declining phases of the latter Halloween solar events.
The reason for this will have to be investigated. On the
one hand, the 1996--2002 data flowing into the forecasting
matrix might still be too limited to accurately predict
considerably extreme space weather conditions. On the
other hand, the technique presented here is intended to
forecast the onset of events, not the decline. A second
forecasting matrix, taking into account the maximum flux
decrease (instead of the increase) encountered in the given

Figure 8. This color matrix provides a color code for
the future proton intensity, 1 hour ahead of time, as
predicted by relativistic electron measurements. The
parameter space is given by the current maximum
electron increase parameter, going back in time for at
least 5 min, but up to 60 min, and the current
relativistic electron intensity. The matrix is derived
from the aggregate of all 1998--2002 relativistic electron
observations and their corresponding 30--50 MeV
proton intensities 1 hour later. The color shows the
average for the proton intensity in each locus. Low
statistics limit the extent of the matrix to the bottom
and upper right.
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Empirical relationship between 
energetic electrons and protons  - 

SOHO COSTEP data used as the 
driver (Posner, 2007). 



Release model 

Release model energetic proton prediction 
(available via iSWA). 



Future 

!   New NASA Living With Star projects attack the 
problem of first-principles modeling of solar eruptions 
from energy buildup to energy transport. 

!   Novel approaches will also include MHD description 
for CMEs coupled with kinetic description of the SEP 
component. 

!   These new models will be delivered to CCMC – stay 
tuned! 


