Forecasting SEP transport and acceleration

- D. Borovikov^{1,2}, I. V. Sokolov², I. Roussev³, A. Taktakishvili^{4,5}, F. Effenberger⁶, T. Gombosi²
 - University of New Hampshire, 2. University of Michigan, 3. NSF,
 NASA GSFC, 5. Catholic University of America,
 Helmholtz Centre for Geosciences

August 3, 2018

Brief description of the model

Components of the predictive tool:

MHD: BATS-R-US/AWSoM-R+EEGGL

SEP: M-FLAMPA

BATS.R-US: Block Adaptive Tree Simulation Roe-type Upwind Scheme AWSoM-R: Alfén Wave Solar atmosphere Model in Real time EEGGL: Eruptive Event Generator with Gibson-Low flux rope M-FLAMPA: Multi Field Line Advection Model for Particle Acceleration

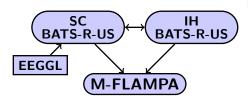


Figure 1: Data/parameter flow among models

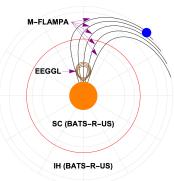


Figure 2: Domain partitioning among components

Model Results: September 2017

Figure 3: CME distorts the extracted field lines and drives the shock that results in SEP acceleration

Model Results: September 2017

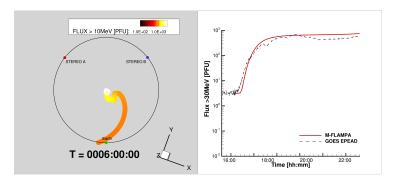


Figure 4: Integrated flux of SEPs. *Left*: top down view on a selected field line; *Right*: comparison with observed flux.

Model Results: July 2017

Figure 5: CME distorts the extracted field lines and drives the shock that results in SEP acceleration

Model Results: July 2017

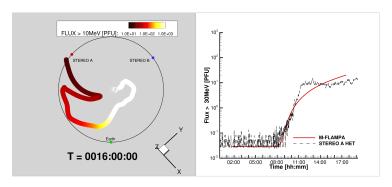


Figure 6: Integrated flux of SEPs. *Left*: top down view on a selected field line; *Right*: comparison with observed flux.

Discussion questions

- Optimization? N/A: Most "expensive" part is AWSoM-R, well established and optimized model.
- What aspects of the event does your model capture well, and what aspects were more difficult to capture?
 - shock: MHD smooths out the shock, which decreases acceleration efficiency; remedy: we trace the shock and artificially sharpen it.
 - diffusion: free streaming upstream has a free parameter $D = \frac{1}{3}\lambda_0 v \left(\frac{pc}{1~{\rm GeV}}\right)^{1/3} \left(\frac{R}{1~{\rm AU}}\right)$
 - injection: distribution function value at injection energy defines the modeled flux value
- What are the next steps for your modeling technique?
- more streamlined operation: eliminate the guessing game for diffusion and injection
- focused transport equation